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A Galerkin Moment Method for the Analysis of
an Insulated Antenna in a Dissipative

Dielectric Medium
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Abstract—A Galerkin moment method is employed to solve
the problem of a dielectric-coated dipole antenna in a dissipa-
tive medium. Piecewise sinusoids are used as basis and testing
functions. The dielectric coating is modeled by equivalent-volume
polarization currents, which are simply related to the conduction
current distribution. No additional unknowns are introduced, and
the size of the moment-method matrix is the same as that for
bare antennas. Exact and approximate formulas for the near
electric field are derived. The computed results exhibit excellent
agreement with those previously published for a symmetric, as
well as an asymmetric insulated dipole. Compared to its existing
competitors, the new method appears to be more general and
computationally efficient.

Index Terms—Antennas in matter, Galerkin technique, insu-
lated antennas, moment method.

I. INTRODUCTION

DIELECTRIC-COATED antennas are often preferable
over bare ones for use in a conducting medium [1].

The reason is that the often undesirable contact between
the antenna and the surrounding space is avoided and, more
importantly, the radiation efficiency of the antenna can be
improved by insulating all or part of its surface. Coated
antennas find use in many diverse areas such as subsurface
communications, telemetry, geophysical explorations, and
microwave hyperthermia, which is of prime interest to the
authors of this paper.

Hyperthermia is the use of heat for the destruction of malig-
nant tissues in the treatment of cancer. The primary objective
of any hyperthermia treatment is to raise the temperature
within a tumor volume above 42C–43 C for a sufficient
period of time, while maintaining the surrounding tissues at
temperatures well below 43C. The high temperatures inside
the tumor can be directly cytotoxic, and have been proven
to potentiate the effects of both chemotherapy and radiation
therapy.

Insulated antennas are used for localized heating in in-
terstitial or invasive hyperthermia, where dipoles operating
at microwave frequencies are inserted into tumors through
brachytherapy catheters. Of primary interest in interstitial-
applicator modeling is the near field of the antenna, where most
of the heating takes place. The near electric field of a dipole in
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a dissipative medium like a tumor is much more complicated
than the far field because of its elliptic polarization.

The near field of a symmetric insulated dipole in a con-
ducting medium was first investigated by Kinget al. [2].
Their results, which were based on an approximate numerical
calculation, were improved by Caseyet al. [3] so that the
field in the immediate vicinity of the insulation could be more
accurately evaluated. This work was extended by Zhanget
al. in [4] to include the case of an asymmetric-coated dipole.
Clibbon et al. [5] developed approximate expressions for this
case, and proposed a computationally efficient technique that
combines the approximate and exact relations. All of these
works are restricted to the case where the complex permittivity
of the exterior medium is much greater than that of the
insulating layer, which is considered to extend to infinity.

Recently, the finite integration algorithm [6] and the finite-
difference time-domain method [7] have been applied for
the analysis of interstitial hyperthermia applicators. These
approaches are more general and versatile, but they require
the discretization of the insulation and part of the surrounding
medium, which can be avoided in integral-equation techniques.

One such technique is that proposed in [8]. There, Richmond
and Newman used the moment method to solve an integral
equation based on the reaction integral by using a piecewise-
sinusoidal approximation of the current. That approach bares
close resemblance to the one presented in this publication.

However, several differences exist between the two ap-
proaches. For example, the method of Richmond and Newman
is approximately Galerkin, as they use tubular dipoles for
expansion, but filamentary ones for testing. Ours is a true
Galerkin method, as both basis and trial functions are asso-
ciated with tubular dipoles. This choice was made because the
true Galerkin solution, although more complicated, is superior
as it is characterized by better convergence behavior and
variational properties. Furthermore, the publication of Rich-
mond and Newman reported only results such as conductance,
susceptance, and resonant length for dielectric-coated antennas
in air, while in this paper, the emphasis is on the near electric
field radiated by insulated dipoles inside dissipative media.

The technique presented here can be seen as a modification
of the piecewise sinusoidal reaction formulation for uninsu-
lated cylindrical antennas. Therefore, Section II starts with
the presentation of the bare antenna formulation. Then, the
modifications that take into account the dielectric coating are
introduced. Exact and approximate expressions for the near
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Fig. 1. A cylindrical dipole antenna.

electric field in the ambient medium are derived in Section IV.
Sections V and VI contain numerical results and conclusions.

In the following analysis, a time dependence is assumed
and suppressed for all sources and fields.

II. BARE ANTENNA FORMULATION

The reaction concept was introduced by Rumsey [9] to sim-
plify the formulation of boundary value problems in electro-
magnetics. The reaction between two monochromatic sources

and with the same frequency, consisting of electric currents
and and magnetic currents and , is defined by

(1)

where the electric and magnetic fields radiated by the sources
and are and , respectively. The integration

volume contains and .
Fig. 1 shows a bare cylindrical antenna. From the surface

equivalence theorem of Schelkunoff, the cylindrical wire can
be replaced by the ambient medium if the following current
densities are introduced on its surface:

(2)

(3)

where is the outward directed unit vector on. By defining
, as in (2) and (3), the total field inside the cylindrical

antenna is zero.
An approximate solution to the radiation problem of the bare

antenna is obtained by replacing the correct sourcesand
with approximate ones, which are adjusted so that their

reactions with certain “test” sources are correct. This insures
that the approximate sources “look” the same as the correct
ones according to the physical tests that are inherent in the
problem.

A group of electric test sources is placed on the surface
of the bare wire. From the reciprocity theorem, we have that

the reaction of the sources and on the test sources
is equal to the reaction of on and

(4)

Below, we consider perfectly conducting antennas and, thus,
. The integral (4) can be further simplified by making

the well-known thin-wire approximations. These approxima-
tions are valid if the antenna radius is much smaller than the
ambient medium wavelength, and the antenna length much
greater than its radius. According to them, the integrations over
the flat-end surfaces of the cylinder and the circumferential
component of the surface current density are neglected,
and the axial component of is considered to be independent
of . In view of these approximations, the reaction integral
equation for a bare antenna reduces to

(5)

where

(6)

Equation (5) is solved via the method of moments [10]. To do
this, is expanded in terms of a finite series as follows:

(7)

where are unknown coefficients, and are a known
basis set. The piecewise sinusoids are chosen as expansion
functions. These are subdomain functions defined by

elsewhere

(8)

where . These functions
resemble the natural current distribution on a perfectly con-
ducting thin wire, and allow us to analytically perform two
of the integrations in (5) when is the wavenumber of the
surrounding medium. The basis functions are placed in
an overlapping array on the surface of the cylindrical antenna
so that the current continuity is automatically enforced.

The piecewise sinusoids are also chosen as testing
functions. Because the testing sources are identical to the
expansion modes in this case, the moment method is an
application of Galerkin’s technique. By inserting (7) in (5),
and enforcing the latter for distinct test sources , the
following system of simultaneous linear algebraic equations
is obtained:

(9)
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Each element of the coefficient matrix expresses the
coupling between the expansion and the testing functions
and . It is the reaction of the current of to the field
radiated by . Because of the similarity which characterizes
the basis functions selected (they all have the same orientation
and equal support), all the elements of every diagonal of
are identical to each other. This means thatis a Toeplitz
matrix, and only one element from every diagonal needs
to be evaluated and stored, resulting in significant savings
in computational time and memory. Furthermore, Levinson’s
method [11] can be used for the fast solution of (9) with only

complexity exploiting the symmetric Toeplitz nature
of .

Using (5)–(9) and after some algebra, it is found that

(10)

where

(11)

The double integration in (10) must be performed numerically.
The integrand in (10) is characterized by singularities at

, , , and . These singularities are
integrable, and the double numerical integration in (10) can
be obtained directly. However, it is preferable to subtract the
singularities in order to simplify the calculations and perform
the integrations more efficiently. The singularities can be
isolated by rewriting the kernels of (10) in the form

(12)

The second integral now has a well-behaved integrand. Fur-
thermore, it may be shown that

(13)

where

(14)

(15)

and is the complete elliptic integral of the first
kind with a readily available polynomial approximation algo-
rithm [12] for its computation. The integration with respect
to in (10) can be performed efficiently with an automatic
adaptive algorithm.

III. M ODIFICATION FOR AN INSULATED ANTENNA

The formulation of Section II can be extended to take into
account the presence of a dielectric coating of an insulated
antenna. For the sake of simplicity in the following discussion,
it is considered that the insulating layer is homogenous and has
the permeability of the surrounding medium.

Using the volume equivalence theorem, the dielectric coat-
ing can be replaced with ambient medium and an equivalent-
volume polarization current

(16)

where E is the electric field inside the coating, and and
denote the permittivities of the insulation and the ambient

medium, respectively.
Therefore, the current that models a coated dipole has two

components. The first is the surface current, which flows
along the -axis on the conductive surface of the
antenna. The second is the volume polarization current.
This current runs radially inside the region of the insulating
layer, and vanishes outside it.

Consequently, for a coated dipole, the reaction integral (4)
is modified by replacing with . This means that a
volume integral has to be added in the left-hand side of (4).
The integration area is the volume of the dielectric coating

, , , and the
integrand is the product of the radial electric field radiated by
the test source inside the coating times the polarization current.
The right-hand side of (4) remains unchanged, as the axial
component of the polarization current is considered negligible
on :

(17)

Ordinarily, and in the area of the dielectric coating
are unknown functions. This means that the introduction of
the polarization current in the analysis has, as a result, the
increase of the unknowns in the method of moments. However,
this is not always so. When the insulating layer is thin, the

and quantities can be expressed approximately as
functions of . Therefore, the new unknowns are dependent
on the original ones, and this relation keeps the total number
of unknowns the same as that of the bare dipole analysis.
Naturally, some of the elements of the moment-method matrix
are modified. These modifications are determined by the
following analysis.

According to the continuity equation, the surface charge
density on the conductive surface of the antenna is
given by

(18)

For perfectly conducting cylinders, the component of the
electric flux density at their surface is equal to . The
relation is also a satisfactory approximation
for the case of cylinders with high, but not necessarily, perfect
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conductivity. As a result, the electric field on the surface
of the dipole can be approximated by the expression

(19)

The and components of inside the dielectric coating
are considered negligible. For thecomponent of in the
insulation, the following quasi-static approximation can be
used:

(20)

Substituting the previous expression in the relation for the
polarization current (16), we get

(21)

From the above analysis, it is obvious that each basis function
used for the expansion of the conduction current is related to a
part of the radial volume polarization current. Therefore, each
element of the moment-method matrix for an insulated
antenna has an additional term. Using (17) and (21), it is found
that this extra term is given by

(22)

The integration with respect to is performed with the
assumption that and are independent of . The limits

and of the integration, with respect to, are the inner and
outer radii of the insulation.

Again making use of a quasi-static approximation, the
testing source field in (22) can be expressed as a function
of the derivative with respect to of the conduction current’s
expansion function :

(23)

Inserting (23) in (22), becomes

(24)

The elements of can be evaluated analytically if piece-
wise sinusoids are used as basis and testing functions. This
means that the computational cost required for the construction
of the moment-method matrix for an insulated antenna is

almost equal to that for a bare antenna, as no numerical
integrations are needed for the evaluation of .

The matrix is tridiagonal in that it has nonzero elements
only on the diagonal (plus or minus one column). This is a
result of the form of the piecewise sinusoid basis functions.
Furthermore, just like , is symmetric and Toeplitz. It
can easily be found that its elements are given by the relations

(25)

(26)

(27)

According to the preceding analysis, the implementation of
the moment method for a dielectric-coated dipole has, as a
result, the following linear system:

(28)

where , , and are the matrices that appear in the bare
antenna formulation, while the elements of express the
effect of the insulation in the analysis.

In case that a portion of the antenna is not coated, then
the part of that results from integration along that portion
is zero. This means that the modeling of the insulation by
equivalent-volume polarization currents is general enough to
treat partly coated and partly bare dipoles. This generalization
is simple, does not introduce additional numerical cost, and
preserves the symmetry of the moment-method matrix.

Although in the beginning of this section the assumption
was made that the dielectric coating is homogenous, this
is not necessary in practice. Expression (22) is sufficiently
general to describe the effect of an inhomogenous coating
when its permittivity is a function of and only. If
the insulation’s permittivity depends on, then the analysis
becomes extremely complicated, as and will also be
functions of . This case is not examined here.

When is a function of only, then the sole modification
required is in the evaluation of the integral with respect to

in (24). If the coating’s permittivity is characterized by a
sufficiently simple radial dependence, then the integral can still
be obtained in closed form. In case the coating is multilayered,
and the layer extends from to and has constant
permittivity , then the expression that gives takes the
form

(29)

The above relation can be significantly simplified, with the in-
troduction of an equivalent homogenous coating that replaces
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the layers of the real coating. This equivalent insulation
extends from to and is characterized
by a dielectric constant given by

(30)

IV. THE ELECTRIC FIELD IN THE SURROUNDING MEDIUM

Due to rotational symmetry, the electric field radiated by the
antenna in the ambient medium has onlyand components,
which are independent of.

The field at a point is given by the superposition of
the partial fields radiated by the expansion function currents
with weights at the coefficients determined via the moment
method as follows:

(31)

where is the electric field at of an imaginary
source with the characteristics (length, orientation, current
distribution) of the piecewise sinusoid.

The field can be expressed in terms of the vector
potential as

(32)

Because of the thin-wire approximations, the vector potential
has only a -component, which is given by

(33)

where

(34)

represents the cylindrical antenna kernel and

(35)

The expressions that give and as functions of are

(36)

(37)

Substituting (33) into (36) yields

(38)

where

(39)

This formula shows that is the superposition of spher-
ical waves which originate at , , and . These are
points of reflection and the locations of maximum positive and
negative charges for the imaginary dipole associated with the
piecewise sinusoid .

By inserting (33) into (37), the component of the
expansion function’s electric field is found to be

(40)

An adaptive quadrature routine based on the Gauss Kronrod
rules, is used to perform the numerical integrations in (38)
and (40). The integrand of expression (38) is highly peaked
at, or in, the vicinity of , , , ,
and close to . For the axial-field computation at these
points, it is a good idea to first remove the singular terms
from (38), and then perform the numerical integration in the
remaining well-behaved integrands. The singular terms can
be transformed to complete elliptic integrals of the first kind,
for which polynomial approximations exist, as was shown in
Section II.

For points not close to the surface of the insulation, the
following approximate versions of (38) and (40) can be used:

(41)

(42)

where

(43)

The results obtained with (42) show excellent agreement
with those from (40) for almost all values of. However,
the use of (41) led to accurate values only in the relatively
far region . The reason for this must be the more
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complicated radial dependence of the electric field’s axial
component.

An interesting and promising idea is the combination of both
(38) and (41) in the computation of the weighted sum (31). The
use of the more accurate, but computationally expensive (38),
can be limited at the terms for which . The number
of these depends on the total number of basis functions used
and the dimensions of the antenna, but usually it will be small
(three or four terms at most). At the remaining terms, the
numerically approximate (41) can be safely chosen.

The electric field radiated in the ambient medium by the
volume polarization current is neglected, as it is almost two
orders of magnitude smaller than the conduction current’s
contribution. This is due to the higher powers of, which
appear on the denominators of the expressions that describe the
polarization current’s field. These expressions turned out to be
too complicated and, thus, their evaluation is not worth being
performed, as they lead to extremely small and negligible
contributions.

V. NUMERICAL RESULTS AND VALIDATION

In order to investigate the accuracy and efficiency of the
proposed method, a symmetric insulated antenna (analyzed in
[2] and [3]) is modeled with it. It is a half-wave dipole inside
an air-filled plastic tube. The radius of the inner conductor is

mm. The half-length of the dipole is cm,
and it is operated at MHz with V. Its
dielectric coating has two layers: an inner layer of air with
outer radius mm and relative permittivity ,
and an outer layer (plastic tube) with mm and

, respectively. These two layers can be substituted
by an equivalent one, with relative permittivity .
The ambient medium has the electrical properties of human
brain tissue. Its real relative permittivity is , and it
is also characterized by a conductivity S/m. The
complex wavenumber of this medium is .

The thin-wire approximations are valid for the above an-
tenna, as its radius is two orders of magnitude smaller than the
wavelength, while the radius to half-length ratio is

. It is obvious that the antenna is electrically thin.
Furthermore, the thickness of the insulating shell is very small
( mm). Consequently, the polarization current that
runs through it can be considered a dependent unknown.

As was noticed in Section IV, numerical integration with
respect to is only required for the computation of the field
values close to the antenna. For this integration, an adaptive
quadrature is utilized for better efficiency. The results of Casey
et al. were extracted using [3, eqs. (11a) and (11b)]. For the
evaluation of these expressions, the same numerical integration
routines with the moment method were used for comparison
purposes.

In Fig. 2, the magnitude of the complex current distribution
on the surface of the dipole is drawn for various numbers
of basis functions. In the same figure, the current distribution
obtained from King’s theory [2] is included. This distribution
has a sinusoidal form with a complex wavenumber different
from that of the surrounding medium. It is obvious from Fig. 2

Fig. 2. Current distribution of a symmetric insulated dipole in human brain
tissue (� = 0:47 mm, b = 0:584 mm, c = 0:8 mm, h1 = h2 = 3:1 cm,
f = 915 MHz, "2r = 1, "3r = 1:78, "4r = 42:5, �4 = 0:88 S/m,
k4 = 127:5 � j25m�1).

TABLE I
INPUT IMPEDANCE ZS FOR THE SYMMETRIC

INSULATED DIPOLE DESCRIBED IN FIG. 2

that as the number of basis functions increases, the
distributions obtained with the moment method successfully
approximate the true current distribution, as King’s results
have been experimentally verified. Additionally, it is noticed
that the moment method exhibits fast convergence and, as a
result, the extraction of satisfactory results can be achieved
with relatively few basis functions per wavelength. This means
that the moment method for this particular problem is not only
accurate, but also computationally efficient.

Table I contains the values of the dipole’s input impedance
computed for various discretizations along with the impedance
provided by King’s theory. It is evident that the moment-
method values begin to stabilize, and compare favorably to
each other and to King’s approximation, once 48 or more
basis functions are used.

Fig. 3 displays the magnitude of the axial electric field
as a function of the radial distance from the dipole’s axis with

constant ( mm) and with the number of basis functions
as parameter. In the same figure, the corresponding

distribution determined with the use of expressions derived by
Caseyet al. [3] is superimposed. As is expected from the
results, the curves also converge quickly as increases,
and their agreement with the field values from Caseyet al.
soon becomes excellent. Even close to (almost on) the surface
of the antenna where the determination of the field is very
difficult due to its elliptical polarization, the correspondence
remains satisfactory. As Caseyet al. pointed out, for

decays rapidly as grows.
Fig. 4 compares our results with those of Caseyet al. for

the radial component of the electric field at mm in
the surrounding space. Just like the axial component case,
the moment-method radial-field distributions soon converge
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Fig. 3. Magnitude of the axial electric field in the surrounding medium for
the insulated dipole described in Fig. 2.

Fig. 4. Magnitude of the radial electric field in the ambient medium for the
antenna described in Fig. 2.

and exhibit high accordance with the Caseyet al. curve. The
component is characterized by simpler radial dependence,

compared to , since it decreases as , away from the
conducting surface of the dipole. Unlike the radial component,

increases away from the conducting surface inside the
dielectric insulation, and then monotonically decreases in the
dissipative ambient medium.

The field computations with (38) and (40) are significantly
faster than the use of (11a) and (11b) if the same algorithm is
used for the numerical integration. The reason for this is that
instead of the double integration with respect toand in
the expressions of Caseyet al., only a sum of one-dimensional
numerical integrations with respect to is required in eval-
uating (38) and (40). As the moment method converges fast,
the number of basis functions needed for sufficient accuracy
can be kept relatively small and, consequently, the weighted
sum of or is computationally cheaper than the
integration of the formulas by Caseyet al. For example, the
moment-method results shown in Figs. 3 and 4 for
were obtained almost three times faster than the field values
at the same points calculated with the double integrations of
Caseyet al.

Of course, in the moment-method approach, the elements
of matrix have to be computed in order to determine the
initially unknown coefficients of the basis functions. How-
ever, these calculations can be performed very efficiently
by exploiting the symmetric Toeplitz nature of the-matrix

and extracting the singularities from the double integral of
(10). In practice, the computational cost of the coefficient
determination is roughly equal to that of finding the field at
two or three points extremely close to the outer surface of
the dipole’s coating using the expressions of Caseyet al. This
relatively low cost has to be paid only once and, afterwards,
the coefficients can be used for the field computations in
large quantities of positions around the antenna. Obviously,
it is a price well worth being paid, as it leads to substantial
computational savings during the field calculations.

In the approach of Kinget al., the integrations in [3,
eqs. (11a) and (11b)] were approximated, resulting in single-
variable integral expressions for the electric-field components.
As is stated in [2] and [3], these approximations place an
additional restriction on the thickness of the insulating layer,
and reduce the accuracy of the field evaluated near the
insulation’s surface. However, for the radial component, and
even for the axial at radial distances , the approximate
expressions provide satisfactory accuracy very efficiently. As
was shown in Section IV, similar approximations can be
introduced to (38) and (40), transforming them into (41) and
(42), respectively. These approximate expressions have the
numerical integration removed from them, and they require
only the computation of a weighted sum. Furthermore, (38)
and (40) can be combined with (41) and (42) in the same
weighted sum, resulting in both an accurate and numerically
cheap form, which competes successfully with the combination
expressions provided by Clibbonet al. [5].

Next, the moment method is used to study the asymmetric
model for interstitial antennas proposed by Zhanget al. in
[4]. With this model, an interstitial applicator is represented
as an asymmetric dipole having two arms of different length.
The antenna we simulate has gap-to-tip length cm,
while in [4], it is found that cm. The
inner conducting cylinder has a diameter of 0.95 mm, and
is coated with two layers. The first is a layer of air ( )
and has an outer diameter of 1.168 mm. The second layer
has relative permittivity , and an outer diameter of
1.6 mm. A homogenous equivalent coating that can substitute
for these two layers must have relative electric permittivity

. The operating frequency of the dipole is again
915 MHz, and is considered to be 1 V. The electric
properties of the surrounding medium are those of muscle
tissue ( and S/m). The wavenumber
in this space is .

The magnitude of the asymmetric dipole’s current distribu-
tion, as it is approximated by the moment method for different
numbers of basis functions, is shown in Fig. 5 along with the
corresponding distribution provided by the theory of Zhang
et al. [4]. The moment-method results display convergence,
which is more evident for big values of . The discrepancies
between the curves of our approach and that of Zhanget al.,
which exist for very coarse discretizations ( ), are
minimized for and become negligible. The values
of the antenna’s input impedance obtained by the moment
method for various together with the impedance estimated
by Zhang’s theory are presented in Table II. It is clear that
the input impedance approximations are characterized by a



ATLAMAZOGLOU AND UZUNOGLU: GALERKIN MOMENT METHOD FOR ANALYSIS OF INSULATED ANTENNA 995

Fig. 5. Current distribution of an asymmetric-coated antenna in muscle tissue
(� = 0:47 mm, b = 0:584 mm, c = 0:8 mm, h1 = 2 cm, h2 = 10 cm,
f = 915 MHz, "2r = 1, "3r = 3:5, "4r = 51:0, �4 = 1:28 S/m,
k4 = 140:7 � j32:8m�1).

Fig. 6. Magnitude of the axial electric field in the ambient medium for the
asymmetric insulated antenna described in Fig. 5.

TABLE II
INPUT IMPEDANCE ZS FOR THE ASYMMETRIC

INSULATED DIPOLE DESCRIBED IN FIG. 5

convergence behavior similar to that observed for the current
distribution.

In Figs. 6 and 7, the moment-method distributions for the
magnitude of the axial and the radial electric field along
the -axis at mm for various are compared with
the respective distributions computed with the expressions
of Zhang’s publication. Both figures show that the moment-
method field results converge easily to the verified values
offered by Zhang’s theory.

A quantity of primary interest in hyperthermia is the specific
absorption rate (SAR), which is closely related to the rate of
temperature increase in a biological medium. SAR is defined
as the spatial distribution of energy absorbed per unit mass

Fig. 7. Magnitude of the radial electric field in the ambient medium for the
coated dipole described in Fig. 5.

Fig. 8. Normalized SAR distribution atz = 5 mm versus the radial distance
from the axis of the antenna described in Fig. 5.

and is measured in watts/kilograms. The SAR is a function of
the electric field radiated by an interstitial antenna, and this
relation is expressed in the form

SAR (44)

where is the conductivity of the ambient medium
(siemens/meters), is its density (kilogram/meter, and
the magnitude of the electric field (volts/meters).

Fig. 8 displays the SAR distributions determined with the
moment method along the radial axis for mm. In this
figure, the displayed SAR values are normalized to their max-
imum values, as the true value of the gap generator’s potential

is unknown. These curves clearly reveal the rapid decrease
of SAR with radial distance due to the high conductivity of
the ambient medium. This is the reason interstitial antennas
in hyperthermia practice are used in arrays of four or more
dipoles positioned around the treated tumor. The analysis of
such arrays with the moment method will be investigated in
a future paper.

VI. CONCLUSIONS

In this paper, a Galerkin moment method for the deter-
mination of the current distribution of a coated antenna in
a dissipative dielectric medium is presented. The dielectric
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coating is modeled by equivalent-volume polarization cur-
rents in a way that prevents the introduction of additional
unknowns and numerical volume integrations. The current
distribution obtained is used to calculate the input impedance
of the antenna and the radiated field in the ambient medium.
Comparisons of the computed results, with values provided
by previously published methods, show good agreement for
symmetric as well as asymmetric models of interstitial hyper-
thermia applicators. For the field computations, the moment
method appears to be more computationally efficient than the
use of King’s model for insulated antennas.

An advantage of the King’s model is the insight it provides
in the operation of a coated dipole as it simulates it with a
transmission line. That model leads to an approximate, but
closed-form, expression of the dipole’s current distribution.
However, that expression is not general, but restricted to the
case where the complex permittivity of the ambient medium is
much greater than that of the dielectric coating. The moment
method we propose is not subject to that restriction, thus, it has
a wider range of applicability. Furthermore, the transmission-
line model considers that the insulating shell in which the
dipole is embedded extends to infinity while, in our approach,
the dielectric coating terminates at the ends of the inner
conductor. Thus, the moment-method model is closer to the
physical situation. Additionally, the insulation modeling by
equivalent polarization currents is general enough to allow the
treatment of inhomogenous coatings or even partially coated
antennas, which present very serious (even insurmountable)
difficulties to King’s model.

However, the most important advantage of the method
presented over its predecessors is that it can be easily extended
to apply in more complicated cases. By incorporating the
modifications that account for the coating to more advanced
and general solvers, insulated antennas with more complex
geometries (e.g., curved dipoles) can be successfully modeled.
A promising option appears to be the coupling of piecewise-
sinusoidal reaction formulation to a volume integral equation
method for the treatment of inhomogeneities in the surround-
ing space.
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